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We report preliminary results from an ongoing investigation of whether authors choose 
the names of fictional characters to indicate their gender, age, and polarity, following up on 
research about the sound-symbolic connotations of real first names [1,2] and fictional 
characters [3,4]. In order to explore the importance of shared language experience in driving 
the choice and interpretation of character names, we consider real first names (e.g., Julia), 
names which are words with existing meanings (aptronyms, e.g., Spark), and made-up names 
(e.g., Arobynn). 63 character names (19 real first names, 24 made-up names, 20 aptronyms) 
are extracted from a crawled corpus of fantasy fan fiction stories consisting of approximately 
17M tokens. Another 120 names (40 per category) come from a curated corpus of children 
and young adult literature, consisting of 2.6M tokens. Names were selected to ensure they 
were sufficiently frequent in the story they featured in to learn reliable semantic representa-
tions from textual co-occurrences. 

We leverage recent models from computational psycholinguistics that extract 
distributed meaning representations from word form alone by exploiting statistical regularities 
in how word forms relate to lexical meanings [5,6,7]. We first featurize English words into letter 
n-grams and features inspired by studies on sound-symbolism. We then derive co-occurrence-
based word embeddings from our corpora [8] for general words as well as character names, 
ensuring embeddings from different stories are aligned and exist in the same embedding 
space for comparability by using Compass-Aligned Distributional Embeddings (CADE, [9]). 
Finally, we learn a mapping function between n-gram and semantic representations consider-
ing the general vocabulary, and use it to generate form-based semantic embeddings for 
character names that can be directly compared to the co-occurrence-based embeddings.  

We evaluate to what extent names reflect semantic properties by feeding the vectors 
for character names in the different feature spaces (letter n-grams, phonological features, 
form-based and co-occurrence-based embeddings) into a Linear Discriminant Analysis (LDA) 
classifier, to probe how discriminable names are in each feature space.   

Classification experiments show that names tend to be discriminable in form and 
semantic feature spaces, with accuracies between 0.59 and 0.7 and Wilk’s lambda between 
0.04 and 0.33, depending on the input features (ngrams, phonological features, word 
embeddings) and the target attribute (age, polarity, gender). Interestingly, names for ambiva-
lent characters (as coded following cognitive literary theory) tend to be less discriminable in 
form space than plain evil or good ones, suggesting that sound symbolic devices may be used 
in subtle ways to convey expectations. Form-based word embeddings, on the contrary, tend 
to be less discriminable, suggesting that the statistical relations between form and meaning in 
the general vocabulary are not reliable to infer the semantic connotations of the names we 
considered. Further inspection revealed that form-based semantic vectors tend to be poorly 
discriminative in general, clustering around the centroid of the embedding space, in contrast 
with evidence from [5]. This pattern likely originates in the semantic representations used: 
whereas [5] used sparse word embeddings learned on the TASA corpus (10M tokens) using 
Naïve Discriminative Learning, we relied on dense representations obtained using CADE to 
ensure the alignment across stories. We plan on experimenting with different semantic 
representations in the future. 

In conclusion, our work highlights that, beyond describing characters sharing an 
attribute in similar ways across different stories (as captured using aligned word-embeddings 
[9]), authors name them in ways which already convey attributes such as gender, polarity and 
age [2,3,4,5]. We are now collecting behavioral intuitions about character names to analyze 
whether readers are sensitive to the patterns in names and whether association patterns in 
form and meaning predict human intuitions about characters’ attributes based on their names 
only, and do so differently depending on whether a name is routinely used to name people, is 
made-up or leverages a word with established meaning. 



Technical details of the computational model 
In order to derive word embeddings for fictional characters that could be compared to 

each other in spite of the fact that characters appear in different stories, we leveraged CADE, 
a model which has already been fruitfully used for narrative understanding [10]. CADE 
leverages the Skip-Gram with Negative Sampling (SGNS) model from word2vec [8], which 
uses two matrices to learn word embeddings, a target matrix and a context matrix. CADE 
exploits this aspect by first training a general embedding using the whole corpus, ignoring the 
different stories. This embedding space is the compass, i.e. a general representation to which 
the embedding spaces derived from each story are aligned. The context matrix of the compass 
is extracted and used to initialize (and freeze) the second matrix of a story-specific SGNS 
embedding space. This approach ensures that all story-specific embedding spaces share the 
same context matrix, making the story-specific embeddings aligned and directly comparable. 

In detail, we trained two CADE models, one for the fan fiction corpus (window size=5, 
min count=5 in each story, dimensionality=300) and one for the children and young adult 
corpus (window size=5, min count=5 in each book, dimensionality=50). Hyper-parameters 
were selected based on a grid-search and an intrinsic evaluation carried out using the MEN 
dataset for semantic relatedness as a benchmark [11]. Parameter optimization is carried out 
with a learning rate of 0.025 and 10 negative samples. We use 5 iterations to train the compass 
embeddings and 5 iterations to train the slice specific embeddings. We initialize all the other 
hyper-parameters using the default settings provided by CADE. 

In order to learn form-based semantic vectors, we leverage Linear Discriminative 
Learning (LDL, [5,6]) and an extension of Orthography-Semantic-Consistency (OSC, [7]). LDL 
learns a mapping function from form vectors to semantic vectors using multivariate multiple 
regression. The encoding of word form exploits letter tri-grams [5,6]. The mapping function is 
obtained by multiplying the semantic matrix, the compass matrix from CADE, by the pseudo-
inverse of the form matrix and minimizes the reconstruction error when predicting semantic 
vectors from form vectors. This mapping function is finally applied to the form vectors of our 
character names and yields form-based semantic vectors which depend on names alone. 

OSC, on the contrary, leverages local similarity in form and semantic space. So far, 
OSC has only been used to estimate (pseudo)words’ semantic neighborhood density, but we 
extend it to generate semantic vectors based on word form alone. First, the 5 nearest 
neighbors of character names in form space are retrieved (in case of ties, all words at the 
same distance are considered). Then, the semantic embeddings of these neighbors are 
fetched from the semantic space and averaged (weighted by the inverse of the distance of the 
word to the target in form space) to yield a semantic vector for the target names which 
combines the semantics of similar words in form space. 
            As we mentioned in above, we use LDA to assess whether different feature represen-
tations capture semantic attributes. For semantic embeddings and n-gram vectors, we feed 
the raw vectors as input. For theory-driven phonological vectors, however, we manually coded 
names following previous work which highlighted sound-symbolic features (since we do not 
have an accepted pronunciation for made-up names, we limited our analysis to features that 
we could code based on the orthographic form). In detail, we used the following features when 
predicting polarity: sonorants, voiced stops, voiceless stops, /f/, /g/, /tʃ/, /s/, /d/ and /ɹ/. These 
phonological features were chosen because the literature suggests that they are 
representative of valence [12] and round and spiky shapes [13,14,15,16], which were used as 
a proxy for polarity (good characters tend to be portrayed using round shapes, in contrast to 
evil characters which are associated to angular shapes [17]). In order to predict age, we 
leveraged the following features: /n/, /t/, /g/, /k-/, voiceless fricatives, voiced fricatives, 
voiceless stops, voiced stops, and sonorant consonants. These features were based on 
sounds related to size iconicity [18,19,20] given that young characters tend to be smaller than 
old characters. Finally, when predicting gender, we relied on the same sound-size iconicity 
features as the prediction of age, because smallness is related to femininity [19]. Additionally, 
the amount of syllables was used because in English women’s names tend to be longer [21]. 
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